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Motivation
Structure learning achieves accuracy of ≈ 70% in a
prominent benchmark study by Mooij et al. [2016] but:

What about confidence in causal effect estimation?

• Confidence statements are needed to reliably draw
conclusions from estimated causal effects.

Naive two-step approach:

1. Apply causal structure learning algorithm.

2. Use standard methods to calculate confidence inter-
vals for causal effects in the inferred model.

→ Fails to account for uncertainty wrto. structure.

Example: If we incorrectly select model X1 ← X2,
we are “certain” the effect of X1 on X2 is zero.

What are the difficulties?

• Cannot restrict to one fixed causal ordering, while re-
specting uncertainty in causal structure.

• Different causal structures allow for the same numer-
ical size of the causal effect.

• Classical resampling/bootstrapping techniques and
standard asymptotic MLE-theory do not work.

We propose a new framework to construct confidence
sets for causal effects that capture both sources of
uncertainty (causal structure, numerical size of effect).

Setup
Start with simplest setting: Recursive linear structural
equation model with homoscedastic Gaussian errors.

Bivariate case with two possible models:

(M1: 1→ 2) X1 = ε1, X2 = β21X1 + ε2,

(M2: 1← 2) X1 = β12X2 + ε1, X2 = ε2,

with parameters β12, β21 ∈ R and ε1, ε2
ind∼ N(0, σ2).

Write Σ for the covariance matrix of (X1, X2).

Simulations
• Synthetic data based on (M1) or (M2).

• All proposed methods achieve the desired empirical
coverage probability.

• Bootstrap method with established GDS [Peters and
Bühlmann, 2014] algorithm does not work in practice.

• Proposed methods account for the high uncertainty in
the causal structure for small true causal effects.

X1 → X2 X2 → X1
method n\β 0 0.05 0.5 0 0.05 0.5

LRT1
500 1.00 0.95 0.97 1.00 0.99 1.00

1000 1.00 0.96 0.98 1.00 0.98 1.00

LRT2
500 0.97 0.97 0.97 0.97 0.97 1.00

1000 0.97 0.96 0.96 0.96 0.96 1.00

SLRT
500 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00

Bootstrap
500 1.00 0.63 0.95 1.00 1.00 1.00

1000 1.00 0.67 0.96 1.00 1.00 1.00

Empirical coverage of 95%-confidence intervals.
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Average maximum width of 95%-confidence intervals.

• True causal effect of size 0.5 (in different directions).

• For no true effect confidence intervals converge to
zero for reasonably large sample sizes.

• Provide correct confidence sets that successfully help
decide whether there is an effect or not.

Method
Target quantity is the total causal effect an interven-
tion on variable X1 has on variable X2, that is,

C(1→ 2) := d
dx1

E[X2| do(X1 = x1)] = β211{(M1)}

= Σ12

Σ11
1{Σ11 ≤ Σ22}.

Key Idea: Use test inversion

• Leverage the duality between statistical hypothesis
tests and confidence regions.

• Shifts the burden to the construction of tests for all
possible values of the total causal effect, i.e., for
all ψ ∈ R we have to construct a test for hypothesis

H0 : C(1→ 2) = ψ.

Three concrete tests based on likelihood ratio tests of
order constraints [Silvapulle and Sen, 2005], and recent
theory of universal inference [Wasserman et al., 2020].

1. Testing Causal Ordering (LRT1)

• Assumption of homoscedasticity implies that causal
order is implied by a set of inequalities for variances.

• Testing these constraints leads to hypothesis

H0 :



Σ12 = ψΣ11 and Σ11 ≤ Σ22, if 0 < |ψ| < 1,
Σ12 = ψΣ11, if 1 ≤ |ψ|,
Σ11 ≥ Σ22, if ψ = 0.

• General alternative of entire positive definite cone.

• Stochastically largest asymptotic distribution of the
likelihood ratio

λn
D−→



0.5χ2
1 + 0.5χ2

2, if 0 < |ψ| < 1,
χ2

1, if 1 ≤ |ψ|,
0.5χ2

0 + 0.5χ2
1, if ψ = 0,

as n→∞.

• Best performing method in experiments with real data.

2. Testing Structure Assumptions (LRT2)

• Assumption of underlying LSEM imposes structure
on the covariance matrix.

• Testing those polynomial constraints representing dif-
ferent possible models leads to hypothesis

H0 :

Σ12 = ψΣ11 and Σ2

11 = det(Σ), if ψ 6= 0,
Σ2

22 = det(Σ), if ψ = 0.

• General alternative of entire positive definite cone.

• Asymptotic distribution of the likelihood ratio λn

λn
D−→


χ2

2, if ψ 6= 0,
χ2

1, if ψ = 0,
as n→∞.

• Explicit calculation of confidence interval possible.

• Best performing method for simulated data.

3. Split Likelihood Ratio Tests (SLRT)

• Employ theory of universal inference by Wasserman
et al. [2020], a general framework to construct hypoth-
esis test.

• Uses a modification of the classical likelihood-ratio
statistic, termed split likelihood ratio.

• Based on data splitting approach.

• Appealing for irregular composite hypotheses where
asymptotic distributions are intractable.

• Type-I error control via Markov’s inequality.

• Explicit calculation of confidence interval possible.

• Conservative method but finite sample guarantee.

Note that confidence regions might be disconnected, re-
flecting the larger null hypothesis for a zero effect.

Outlook
• Generalize proposed framework in future work.

• First promising results with SLRT method

– for higher dimensions,

– for different model assumptions (linear non gaus-
sian additive noise models) via empirical likelihood.
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