Munich Center for Machine Learning (MCML) TUM School of Computation, Information and Technology Technical University of Munich

Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity

David Strieder, Mathias Drton

Probabilistic Graphical Models (PGM) Nijmegen, September 11-13, 2024

Research question: What is the total causal effect of X_i on X_j ? Confidence?

Only observational data available.

Underlying causal structure is unknown.

Starting point Underlying Linear SCM with Gaussian errors

Example:

$$\begin{split} X_{1} &= \beta_{13}X_{3} + \varepsilon_{1} \\ X_{2} &= \beta_{21}X_{1} + \beta_{24}X_{4} + \beta_{25}X_{5} + \varepsilon_{2} \\ X_{3} &= \varepsilon_{3} \\ X_{4} &= \beta_{41}X_{1} + \varepsilon_{4} \\ X_{5} &= \beta_{25}X_{3} + \varepsilon_{5} \end{split}$$

where $\varepsilon_j \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_j^2)$

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 3/15

Starting point Underlying Linear SCM with Gaussian errors

Example: Causal effect $\mathcal{C}(1 \to 2) := \frac{d}{dx_1} \mathbb{E}[X_2| \operatorname{do}(X_1 = x_1)] = \varphi(G, \Sigma).$

where $\varepsilon_j \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_j^2)$

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 4/15

Identifiabilty

Question: Given an observational distribution P_{Σ_0} from a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we recover the (causal) target of interest $C(i \to j)$?

Identifiabilty

Question: Given an observational distribution P_{Σ_0} from a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we recover the (causal) target of interest $C(i \to j)$?

- Each DAG generates (sub-)set $\mathcal{M}(G) \subseteq \mathcal{M}$.
- What happens if $\Sigma_0 \in \mathcal{M}(G^1) \cap \mathcal{M}(G^2)$? $\varphi(G^1, \Sigma_0) = \varphi(G^2, \Sigma_0)$?

Identifiabilty

Question: Given an observational distribution P_{Σ_0} from a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we recover the (causal) target of interest $C(i \to j)$?

- Each DAG generates (sub-)set $\mathcal{M}(G) \subseteq \mathcal{M}$.
- What happens if $\Sigma_0 \in \mathcal{M}(G^1) \cap \mathcal{M}(G^2)$? $\varphi(G^1, \Sigma_0) = \varphi(G^2, \Sigma_0)$?

Only need to consider all complete DAGs $\mathcal{G}(d)$.

Identifiability Arbitrary error variances

Linear Gaussian SCM with arbitrary error variances: $\mathcal{M} = \bigcup_{G \in \mathcal{G}(d)} \mathcal{M}(G)$, where

$$\mathcal{M}(G) = \left\{ \Sigma \in \mathsf{PD}(d) : \exists B \in \mathbb{R}^G, \omega \in \mathbb{R}^d \text{ with } \Sigma = (I_d - B)^{-1} \mathsf{diag}(\omega)(I_d - B)^{-T} \right\}$$

Theorem (see, e.g., Pearl (2009)). The total causal effect $C(i \rightarrow j)$ is not generically identifiable under the assumption of an underlying linear Gaussian SCM.

Identifiability Equal error variances

Linear Gaussian SCM with partially equal error variances: $\mathcal{M}_{EV} = \bigcup_{G \in \mathcal{G}(d)} \mathcal{M}_{EV}(G)$, where

$$\mathcal{M}_{EV}(G) = \Big\{ \Sigma \in \mathsf{PD}(d) : \exists \omega > 0 \text{ with } \omega = \Sigma_{k,k|p(k)} \quad \forall \ k = 1, \dots, d \Big\}.$$

Theorem (Peters and Bühlmann (2014)). The total causal effect $C(i \rightarrow j)$ is globally identifiable under the assumption of an underlying linear Gaussian SCM with equal error variances.

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 7/15

Identifiability Partially equal error variances

Linear Gaussian SCM with partially equal error variances: $\mathcal{M}_{PEV} = \bigcup_{G \in \mathcal{G}(d)} \mathcal{M}_{PEV}(G)$, where

$$\mathcal{M}_{PEV}(G) = \left\{ \Sigma \in \mathsf{PD}(d) : \Sigma_{i,i|p(i)} = \Sigma_{j,j|p(j)} \right\}.$$

Identifiability Partially equal error variances

Linear Gaussian SCM with partially equal error variances: $\mathcal{M}_{PEV} = \bigcup_{G \in \mathcal{G}(d)} \mathcal{M}_{PEV}(G)$, where

$$\mathcal{M}_{PEV}(G) = \left\{ \Sigma \in \mathsf{PD}(d) : \Sigma_{i,i|p(i)} = \Sigma_{j,j|p(j)} \right\}.$$

Theorem. The total causal effect $C(i \rightarrow j)$ is generically identifiable under the assumption of an underlying linear Gaussian SCM with equal error variances among *i* and *j*.

Causal Inference under Structure Uncertainty

Question: Given observational data from P_{Σ_0} out of a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we construct a confidence region for $\mathcal{C}(i \to j)$?

Causal Inference under Structure Uncertainty

Question: Given observational data from P_{Σ_0} out of a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we construct a confidence region for $\mathcal{C}(i \to j)$?

- Statistical uncertainty in the numerical size of the effect.
- Structural uncertainty in the underlying causal graph.
- Causal uncertainty due to equivalence of multiple models.

Causal Inference under Structure Uncertainty

Question: Given observational data from P_{Σ_0} out of a set of possible distributions $\{P_{\Sigma} : \Sigma \in \mathcal{M}\}$, can we construct a confidence region for $\mathcal{C}(i \to j)$?

- Main Idea: Use test inversion.
- Employ Dual-LRT for the arising testing problem, that is, for all $\psi \in \mathbb{R}$ and $G \in \mathcal{G}(d)$ invert joint test of structure and effect size:

$$\mathsf{H}_{0}^{(\psi)}(G): \Sigma \in \mathcal{M}_{\psi}(G)$$
 against $\mathsf{H}_{1}: \Sigma \in \mathcal{M} \setminus \mathcal{M}_{\psi}(G).$

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 10/15

Causal Inference under Structure Uncertainty Arbitrary error variances

MCML

$$\bigcup_{G\in\mathcal{G}(d)\,:\,D(G)\geq 0} \left[L(G),U(G)\right]\bigcup\{0\},$$

where

$$L(G) := \frac{-(\widehat{\Sigma}^{-1})_{j,i|d(i)\setminus\{j\}} - \sqrt{D(G)}}{(\widehat{\Sigma}^{-1})_{j,j|d(i)\setminus\{j\}}}, \qquad U(G) := \frac{-(\widehat{\Sigma}^{-1})_{i,j|d(i)\setminus\{j\}} + \sqrt{D(G)}}{(\widehat{\Sigma}^{-1})_{j,j|d(i)\setminus\{j\}}}$$

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 11/15

Causal Inference under Structure Uncertainty Partially equal error variances

~

Theorem. An asymptotic $(1 - \alpha)$ -confidence set for the total causal effect $C(i \rightarrow j)$ under the assumption of an underlying linear Gaussian SCM with (partially) equal error variance among *i* and *j* is given by

$$\bigcup_{G \in \mathcal{G}(d): D(G) \ge 0} \left[L(G), U(G) \right] \bigcup \left\{ 0 : Z \le K \exp\left(\frac{\chi_{1,1-\alpha}^2}{2n}\right) \right\},$$

where

$$L(G) := \frac{-(\widehat{\Sigma}^{-1})_{j,i|d(i)\setminus\{j\}} - \sqrt{D(G)}}{(\widehat{\Sigma}^{-1})_{j,j|d(i)\setminus\{j\}}}, \qquad U(G) := \frac{-(\widehat{\Sigma}^{-1})_{i,j|d(i)\setminus\{j\}} + \sqrt{D(G)}}{(\widehat{\Sigma}^{-1})_{j,j|d(i)\setminus\{j\}}}$$

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 12/15

Simulations

Empirical coverage of 95%-confidence intervals for the total causal effect.

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 13/15

Simulations

Mean width of $95\%\text{-}\mathrm{confidence}$ intervals for the total causal effect.

David Strieder, Mathias Drton | Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity Page 14/15

- The total causal effect is generically identifiable under partial homoscedasticity.
- Closed-form solution for constructing confidence regions for total causal effects that:
 - account for **causal structure uncertainty**
 - as well as **statistical uncertainty** about the numerical size of the effect.