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Starting point

Research question: What is the total causal effect of Xi on Xj? Confidence?

■ Only observational data available.

■ Underlying causal structure is unknown.
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Starting point
Underlying Linear SCM with Gaussian errors

Example:

X1 = β13X3 + ε1

X2 = β21X1 + β24X4 + β25X5 + ε2

X3 = ε3

X4 = β41X1 + ε4

X5 = β25X3 + ε5

where εj
i.i.d.∼ N (0, σ2
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Starting point
Underlying Linear SCM with Gaussian errors

Example: Causal effect C(1 → 2) := d
dx1

E[X2| do(X1 = x1)] = φ(G,Σ).

X1 = β13X3 + ε1

X2 = β21X1 + β24X4 + β25X5 + ε2

X3 = ε3

X4 = β41X1 + ε4

X5 = β25X3 + ε5

where εj
i.i.d.∼ N (0, σ2
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Identifiabilty

Question: Given an observational distribution PΣ0 from a set of possible distributions
{PΣ : Σ ∈ M}, can we recover the (causal) target of interest C(i → j)?

■ Each DAG generates (sub-)set M(G) ⊆ M.

■ What happens if Σ0 ∈ M(G1) ∩ M(G2)? φ(G1,Σ0) = φ(G2,Σ0) ?

■ Only need to consider all complete DAGs G(d).
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Identifiability
Arbitrary error variances

Linear Gaussian SCM with arbitrary error variances: M =
⋃
G∈G(d) M(G), where

M(G) =
{

Σ ∈ PD(d) : ∃B ∈ RG, ω ∈ Rd with Σ = (Id −B)−1diag(ω)(Id −B)−T
}

Theorem (see, e.g., Pearl (2009)). The total causal effect C(i → j) is not generically
identifiable under the assumption of an underlying linear Gaussian SCM.
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Identifiability
Equal error variances

Linear Gaussian SCM with partially equal error variances: MEV =
⋃
G∈G(d) MEV (G),

where

MEV (G) =
{

Σ ∈ PD(d) : ∃ω > 0 with ω = Σk,k|p(k) ∀ k = 1, . . . , d
}
.

Theorem (Peters and Bühlmann (2014)). The total causal effect C(i → j) is globally
identifiable under the assumption of an underlying linear Gaussian SCM with equal error
variances.
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Identifiability
Partially equal error variances

Linear Gaussian SCM with partially equal error variances: MPEV =
⋃
G∈G(d) MPEV (G),

where
MPEV (G) =

{
Σ ∈ PD(d) : Σi,i|p(i) = Σj,j|p(j)

}
.

Theorem. The total causal effect C(i → j) is generically identifiable under the assumption
of an underlying linear Gaussian SCM with equal error variances among i and j.
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Causal Inference under Structure Uncertainty

Question: Given observational data from PΣ0 out of a set of possible distributions
{PΣ : Σ ∈ M}, can we construct a confidence region for C(i → j)?

■ Statistical uncertainty in the numerical size of the effect.

■ Structural uncertainty in the underlying causal graph.

■ Causal uncertainty due to equivalence of multiple models.
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Causal Inference under Structure Uncertainty

Question: Given observational data from PΣ0 out of a set of possible distributions
{PΣ : Σ ∈ M}, can we construct a confidence region for C(i → j)?

■ Main Idea: Use test inversion.

■ Employ Dual-LRT for the arising testing problem, that is, for all ψ ∈ R and G ∈ G(d)
invert joint test of structure and effect size:

H(ψ)
0 (G) : Σ ∈ Mψ(G) against H1 : Σ ∈ M\Mψ(G).
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Causal Inference under Structure Uncertainty
Arbitrary error variances

Theorem. An asymptotic (1 − α)-confidence set for the total causal effect C(i → j) under
the assumption of an underlying linear Gaussian SCM is given by⋃

G∈G(d) :D(G)≥0

[
L(G), U(G)

] ⋃ {
0
}
,

where

L(G) :=
−(Σ̂−1)j,i|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
, U(G) :=

−(Σ̂−1)i,j|d(i)\{j} +
√
D(G)

(Σ̂−1)j,j|d(i)\{j}
.
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Causal Inference under Structure Uncertainty
Partially equal error variances

Theorem. An asymptotic (1 − α)-confidence set for the total causal effect C(i → j) under
the assumption of an underlying linear Gaussian SCM with (partially) equal error variance
among i and j is given by⋃

G∈G(d) :D(G)≥0

[
L(G), U(G)

] ⋃ {
0 : Z ≤ K exp

(χ2
1,1−α

2n
)}
,

where

L(G) :=
−(Σ̂−1)j,i|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
, U(G) :=

−(Σ̂−1)i,j|d(i)\{j} +
√
D(G)

(Σ̂−1)j,j|d(i)\{j}
.
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Simulations
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Empirical coverage of 95%-confidence intervals for the total causal effect.
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Simulations
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Mean width of 95%-confidence intervals for the total causal effect.
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Conclusion

■ The total causal effect is generically identifiable under partial homoscedasticity.

■ Closed-form solution for constructing confidence regions for total causal effects that:

□ account for causal structure uncertainty

□ as well as statistical uncertainty about the numerical size of the effect.
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