Munich Center for Machine Learning TUM School of Computation, Information and Technology Technical University of Munich

Confidence in Causal Inference under Structure Uncertainty

David Strieder (joint work with Mathias Drton)

ICSDS 23, Lisbon, Portugal December 18-21, 2023

Starting point

Research question: What is the total causal effect of X_i on X_j ? Confidence?

- **Given:** Observational data in form of n samples of $(X_1, ..., X_d)$.
- **Problem:** Causal structure unknown.

Starting point

- **Research question:** What is the total causal effect of X_i on X_j ? Confidence?
- **Given:** Observational data in form of n samples of $(X_1, ..., X_d)$.
- **Problem:** Causal structure unknown.
- Naive two-step approach?
 - (1) Learn causal structure.
 - (2) Calculate confidence intervals for causal effects in inferred model.

Setup Underlying Linear SEM with equal error variances

Example: Target effect $\mathcal{C}(1 \to 2) := \frac{\mathsf{d}}{\mathsf{d}x_1} \mathbb{E}[X_2 | \mathsf{do}(X_1 = x_1)] = \beta_{21} + \beta_{41}\beta_{24}$.

$$X_1 = \beta_{13}X_3 + \varepsilon_1$$

$$X_2 = \beta_{21}X_1 + \beta_{24}X_4 + \beta_{25}X_5 + \varepsilon_2$$

$$X_3 = \varepsilon_3$$

$$X_4 = \beta_{41}X_1 + \varepsilon_4$$

$$X_5 = \beta_{25}X_3 + \varepsilon_5$$

where $\varepsilon_j \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Main Idea: Use test inversion.

Goal: Construct suitable **tests for all possible effects.**

David Strieder | Confidence in Causal Inference under Structure Uncertainty

Main Idea: Use test inversion.

Goal: Construct suitable **tests for all possible effects**.

Difficulty: Each Hypothesis of fixed effect is **union of single hypotheses** over all DAGs on *d* nodes.

$$\mathsf{H}_{0}^{(\psi)} := \bigcup_{G \in \mathcal{G}(d)} \mathsf{H}_{0}^{(\psi)}(G)$$

Main Result

Main steps:

- (1) Intersection union test.
- (2) Stochastic upper bound by relaxing alternative.
- (3) LRT with conservative critical values from upper bound.

Main Result

Main steps:

- (1) Intersection union test.
- (2) Stochastic upper bound by relaxing alternative.
- (3) LRT with conservative critical values from upper bound.

Result: Asymptotic $(1 - \alpha)$ -confidence set for causal effect $C(i \rightarrow j)$ is

$$\{\psi \in \mathbb{R} : \min_{G \in \mathcal{G}(d) : i <_G j} \lambda_n^{(\psi)}(G) \le \chi_{d,1-\alpha}^2\} \cup \{0 : \min_{G \in \mathcal{G}(d) : j <_G i} \lambda_n^{(0)}(G) \le \chi_{d-1,1-\alpha}^2\}$$

David Strieder | Confidence in Causal Inference under Structure Uncertainty

- Confidence regions for total causal effects capturing both types of uncertainty: numerical size of effects and causal structure.
- Branch and bound type search algorithm through causal orderings. Feasible up to 12 involved variables (already more than 10^{26} structures).
- Conceptual idea of leveraging test inversions of joint tests for causal structure and effect size generalizable to other modeling assumptions.