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Starting point TUTI

B Given: Observational data in form of n samples of (X7, ..., X4).

B Research question: What is the (total) causal effect of X; on X5? Confidence?
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Starting point TUTI

B Given: Observational data in form of n samples of (X7, ..., X4).
B Research question: What is the (total) causal effect of X; on X5? Confidence?

B Naive two-step approach?

(1) Learn causal structure.
(2) Calculate confidence intervals for causal effects in inferred model.
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Setup TUTI

Model assumptions that ensure identifiability

B Linear structural equation model with Gaussian errors with equal variances.

Xj:Ek#ijka_'_ej’ €; :N(O,O'Q), j=1,,d

B Represented by directed acyclic graph.
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Setup Tm

B Target: Total causal effect

d
C(l — 2) = di_rlE[Xﬂ dO(Xl = 3}'1)] = 212|pa(1)/211|pa(1)1(1 < 2)
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Setup

B |dea: Duality between statistical hypothesis test and confidence regions.

Tests for
HQ : C(l — 2) = ¢

B Goal: construct suitable tests for all possible hypothesized causal effects!

—
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Hypothesis C(1 — 2) = ¢ LM

Case ¢ # 0
_ 2
U1<2{E € PD(d) : 302 such that w2 12/pa(1)/0 ' }
0’ =Yjipag) foralljel,...d
0 =Dizpa/o” 2 .
- Usc110% =Sjjpag) foralljel,...d
= {02 =Yjjjpa() foralljel,..d U 2<1{ Jilpa(s) J
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Next Steps? Tm

B Intersection union test.
B Relax alternative, single Hypothesis is submanifold of pd cone.
B Theory of constrained likelihood ratio tests.

B Maximizing Gaussian likelihood under polynomial constraint.
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Bivariate Example 'I'I.I'I'I

Theorem. Leta € (0,1) and define

N . 1 N .
Ko = 2%, det(3)Y2 exp (%xg_%l_a) — %2 —det(¥), a=1,2.
Then an asymptotic (1 — «) confidence set for the causal effect C(1 — 2) is given by:
(i) If K1 > 0, then the nonzero elements of the confidence set are the nonzero elements of
the interval [L, U] with

2 — VK

X

L= =
%%

, U:

(i) Additionally the confidence set contains zero if and only if Ko > 0.
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Simulations "-m
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