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Starting point

■ Given: Observational data in form of n samples of (X1, ..., Xd).

■ Research question: What is the (total) causal effect of X1 on X2? Confidence?

■ Naive two-step approach?
(1) Learn causal structure.
(2) Calculate confidence intervals for causal effects in inferred model.
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Setup
Model assumptions that ensure identifiability

■ Linear structural equation model with Gaussian errors with equal variances.

LSEM

Xj =
∑

k ̸=j βjkXk + ϵj , ϵj = N(0, σ2), j = 1, ..., d.

■ Represented by directed acyclic graph.
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Setup

■ Target: Total causal effect

C(1 → 2) := d
dx1

E[X2| do(X1 = x1)] = Σ12|pa(1)/Σ11|pa(1)1(1 < 2)
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Setup

■ Idea: Duality between statistical hypothesis test and confidence regions.

Tests for
H0 : C(1 → 2) = ψ

Confidence interval
for C(1 → 2)

■ Goal: construct suitable tests for all possible hypothesized causal effects!
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Hypothesis C(1 → 2) = ψ

Case ψ ̸= 0

∪1<2
{

Σ ∈ PD(d) : ∃σ2 such that

{
ψ = Σ12|pa(1)/σ

2

σ2 = Σjj|pa(j) for all j ∈ 1, ..., d

}

Case ψ = 0

∪1<2

{
0 = Σ12|pa(1)/σ

2

σ2 = Σjj|pa(j) for all j ∈ 1, ..., d
⋃

∪2<1
{
σ2 = Σjj|pa(j) for all j ∈ 1, ..., d
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Next Steps?

■ Intersection union test.

■ Relax alternative, single Hypothesis is submanifold of pd cone.

■ Theory of constrained likelihood ratio tests.

■ Maximizing Gaussian likelihood under polynomial constraint.
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Bivariate Example

Theorem. Let α ∈ (0, 1) and define

Ka := 2 Σ̂aa det(Σ̂)1/2 exp
( 1

2nχ
2
3−a,1−α

)
− Σ̂2

aa − det(Σ̂), a = 1, 2.

Then an asymptotic (1 − α) confidence set for the causal effect C(1 → 2) is given by:
(i) If K1 ≥ 0, then the nonzero elements of the confidence set are the nonzero elements of
the interval [L,U ] with

L := Σ̂0
12 −

√
K1

Σ̂0
11

, U := Σ̂0
12 +

√
K1

Σ̂0
11

.

(ii) Additionally the confidence set contains zero if and only if K2 ≥ 0.
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Simulations
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