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Motivation
Inferring gene regulatory networks with graphi-
cal/causal models:

222

Gene expression data

80
5 

E
xp

er
im

en
ts

334 Genes

Gene expression data for E. coli and estimated (undirected)
network (from Drton & Maathuis. Structure Learning in
Graphical Modeling, 2017)

Structure learning methods may estimate

• the absence/presence of interactions in com-
plex systems, and also

• causal directions (does gene ‘X’ regulate gene
‘Y’ or vice versa?).

Given a causal structure, standard statistical
methods quantify the size of causal effects and
provide an uncertainty assessment.

However, ‘double-dipping’ problem occurs
when both causal structure and the effect are
being estimated from one data set.

We propose a new framework to construct con-
fidence sets for causal effects that capture
both sources of uncertainty (causal structure
and numerical size of effect).

−→ First results/paper at UAI 2021 (37th Con-
ference on Uncertainty in AI)

Setup
Model assumptions that ensure identifiability:

• Observational data of (X1, .., Xd) follows lin-
ear structural equation model, represented
by a directed acyclic graph, that is,

Xj =
∑
k ̸=j

βjkXk + ϵj, j = 1, ..., d,

• and Gaussian errors with equal variances

ϵj
i.i.d.∼ N (0, σ2), j = 1, ..., d.

Target quantity is the total causal effect that
an external intervention on variable X1 has onto
variable X2, that is,

C(1 → 2) : = d
dx1

E[X2| do(X1 = x1)]
= Σ12|pa(1)/Σ11|pa(1) 1(1 <G 2)
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Method
Key Idea: Use test inversion

• Leverage duality between statistical hypothesis
tests and confidence regions.

• Shifts task to construction of tests for all pos-
sible values of the total causal effect, i.e., for
all ψ ∈ R we have to test the hypothesis

H(ψ)
0 : C(1 → 2) = ψ.

Difficulty: Hypothesis of fixed effect ψ is union
of single hypotheses over all possible directed
acyclic graphs G(d) that allow ψ.

Insight: Each single hypothesis for a given graph
defines a smooth submanifold of the cone of
covariance matrices, namely all Σ ∈ PD(d) such
that there exists σ ∈ R with{

ψ = Σ12|pa(1)/σ
2 1(1 <G 2)

σ2 = Σjj|pa(j), j = 1, ..., d.

Idea: Intersection union tests, that is, reject the
union if we reject each single hypothesis.

We provide three concrete solutions based on
likelihood ratio tests of order constraints (Silva-
pulle & Sen. Constrained Statistical Inference,
2005) and recent theory of universal inference
(Wassermann et al. Universal Inference, 2020).

Constrained likelihood ratio test (LRT)

• Idea: Relax alternative and test against the
entire cone of covariance matrices.

• Under each single hypothesis the asymptotic
distribution of the likelihood ratio statistic is a
chi-square distribution.

• Result: An asymptotic (1 − α)-confidence set
for the causal effect C(1 → 2) is the union of

{ψ ∈ R : min
G∈G(d) : 1<G2

λ(ψ)
n (G) ≤ χ2

d,1−α}

and {0 : minG∈G(d) : 2<G1 λ
(0)
n (G) ≤ χ2

d−1,1−α}.

Split likelihood ratio test (SLRT)

• Idea: Employ data splitting approach.

• Uses modification of classical likelihood ratio
statistic with a universal critical value.

• Type-I error control via Markov’s inequality.

• Conservative but finite sample guarantee.

Note that confidence regions might be discon-
nected, reflecting the larger null hypothesis for a
zero effect.

Simulations
Experiments with synthetic data based on ran-
domly selected DAGs on 5 nodes for different av-
erage edge weights β and sample sizes n.

• All proposed methods achieve the desired
empirical coverage probability.

method LRT LRTheur SLRT Bootstrap
β\n 100 1000 100 1000 100 1000 100 1000

0.05 0.98 0.97 1.00 1.00 1.00 1.00 0.66 0.75
0.1 0.98 0.98 1.00 1.00 1.00 1.00 0.75 0.83
0.5 0.98 0.98 1.00 1.00 1.00 1.00 0.97 0.97

Empirical Coverage of 95%-CIs.
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Percentage of times zero contained in 95%-CIs.

• Bootstrap method does not work in prac-
tice (with established GDS algorithm (Peters &
Bühlmann. Identifiability of Gaussian Structural
Equation Models with Equal Variances, 2014)).

• Proposed methods correctly account for the un-
certainty in the causal structure and success-
fully help to draw conclusions about the ex-
istence and size of causal effects.
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