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Starting point

■ Research question: What is the total causal effect of Xi on Xj? Confidence?

■ Given: Observational data in form of n samples of (X1, ..., Xd).

■ Problem: Causal structure unknown.

■ Naive two-step approach?
(1) Learn causal structure.
(2) Calculate confidence intervals for causal effects in inferred model.
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Setup
Underlying Linear SCM with equal error variances

■ Example:

X1 = β13X3 + ε1

X2 = β21X1 + β24X4 + β25X5 + ε2

X3 = ε3

X4 = β41X1 + ε4

X5 = β25X3 + ε5

where εj
i.i.d.∼ N (0, σ2)
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Setup

■ Main Idea: Use test inversion.

Tests for
H(ψ)

0 : C(i → j) = ψ
Confidence interval

for C(i → j)

■ Goal: Construct suitable tests for all possible effects.

■ Difficulty: Each Hypothesis of fixed effect is union of single hypotheses over all DAGs
on d nodes.

H(ψ)
0 :=

⋃
G∈G(d)

H(ψ)
0 (G)
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Setup

■ Linear SCM with equal error variances: M :=
⋃
G∈G(d) M(G), where

M(G) =
{

Σ ∈ PD(d) : ∃σ2 > 0 with σ2 = Σk,k|p(k) ∀ k = 1, . . . , d
}
.

■ Hypothesis of fixed total causal effect: Mψ :=
⋃
G∈G(d) Mψ(G), where

Mψ(G) :=
{

Σ ∈ M(G) : ψ = Σj,i|p(i)/Σi,i|p(i)
}
.

■ Task: For all ψ ∈ R and G ∈ G(d) invert joint test of structure and effect size:

H(ψ)
0 (G) : Σ ∈ Mψ(G) against H1 : Σ ∈ M\Mψ(G).
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Maximum Likelihood Estimation

■ Problem: Maximizing the Gaussian likelihood

2
nℓn(Σ) = − log det(2πΣ) − tr(Σ−1Σ̂)

with Σ ∈ Mψ(G) is equivalent to minimizing

tr((Id −B)T (Id −B)Σ̂))

where B ∈ RG represents the direct causal effects between variables.

■ Fixing total causal effects is complex polynomial constraints on direct effects, namely

(Id −B)−1
j,i = ψ.
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Dual Maximum Likelihood Estimation

■ Solution: Maximizing the Dual likelihood

2
nℓ
dual
n (Σ) := − log det(2πΣ−1) − tr(ΣΣ̂−1)

with Σ ∈ Mψ(G) is equivalent to minimizing

tr((Id −B)−1(Id −B)−T Σ̂)) = tr((Id − T )T (Id − T )Σ̂))

where T ∈ R−G represents the negative total causal effects between variables.

■ Fixed total effect constraint only pertains to one parameter, namely

Ti,j = −ψ
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Main Result

■ Main steps:

(1) Intersection union test.

(2) Stochastic upper bound by relaxing alternative.

(3) Dual-LRT with conservative critical values from upper bound.

■ Result: Asymptotic (1 − α)-confidence set for causal effect C(i → j) is

{ψ ∈ R : min
G∈G(d) : i<Gj

dual-λ(ψ)
n (G) ≤ χ2

d,1−α} ∪ {0 : min
G∈G(d) : j<Gi

dual-λ(0)
n (G) ≤ χ2

d−1,1−α}
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Computation

■ Bottleneck: Superexponential growth of possible causal structures with nodes.

■ ’Only’ need to consider complete DAGs: d factorial structures.

■ Branch and bound type search algorithm through causal orderings. Feasible up to 12
involved variables (already uncertainty over more than 1026 structures).
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Conclusion

■ Closed-form solution for constructing confidence regions for total causal effects that:

□ account for causal structure uncertainty

□ as well as statistical uncertainty about the numerical size of the effect.

■ Conceptual ideas of leveraging test inversions of joint tests for causal structure and
effect size generalizable to other modeling assumptions.

■ Matrix inversion interplay between direct and total effects that is behind the use of dual
likelihood can be exploited in other causal inference tasks.
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Thank you!

■ Our related papers:

□ Strieder and Drton (2024). Identifying Total Causal Effects in Linear Models under Partial
Homoscedasticity. PGM 24. Preprint at arXiv.

□ Strieder and Drton (2024). Dual Likelihood for Causal Inference under Structure Uncertainty.
CLeaR 24. PMLR 236:1-17.

□ Strieder and Drton (2023). Confidence in Causal Inference under Structure Uncertainty in
Linear Causal Models with Equal Variances. J. Causal Inference 11 (1).

□ Strieder, Freidling, Haffner and Drton (2021). Confidence in Causal Discovery with Linear
Causal Models. UAI 21. PMLR 161:1217-1226.

David Strieder, Mathias Drton | Confidence in Causal Inference under Structure Uncertainty Page 12/12


