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1. Motivation
Inferring causal structures among complex
systems of interacting variables:
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Example: Inferring protein signaling networks from single-

cell data with causal structure learning algorithms.

Structural causal models postulate noisy func-
tional relations among interacting variables.

Post-nonlinear models (PNL) consitute

• a flexible subclass of causal models and

• ensure unique identification from observa-
tional data.

Existing methods learn functional relations by
minimizing residual dependencies and subse-
quently test independence from residuals to de-
termine causal orientations.

⇒ prone to overfitting and difficult to tune.

We propose a new approach that uses rank-
based methods to estimate the functional pa-
rameters and therefore disentangles the estima-
tion of the non-linear functions from the indepen-
dence tests used to find causal orientations.

2. Setup
Flexible causal model that ensures identifiability:

• Observational data of (X (1), .., X (m)) follows
PNL model, that is, for k = 1, . . . , m

X (k) = f (k)
(

g(k)
(

X (PAk)
)

+ ε(k)
)

.

• f (k) is continuous and strictly increasing.

• ε(k) are jointly independent noise variables.

• Focus on linear g(k). Can be extended to non-
linear functions via basis expansions or MLPs.

• Goal: Infer causal structure, naturally repre-
sented by a directed acyclic graph.

Example:

X (1) = ε(1),

X (2) = f (2)(X (1)β(2) + ε(2)),
X (3) = f (3)(X (1)β(3) + ε(3)),
X (4) = f (4)((X (2), X (3))β(4) + ε(4)),
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3. Method
Learning causal structures via recursive sink
node identification:

1. For each node k, learn functions f̂ (k) and β̂(k)

corresponding to PNL model(
f (k))−1(X (k)) = (X (−k))Tβ(k) + ε(k)

where X (−k) are remaining nodes except k.

2. Use Step 1. to estimate residuals

ε̂(k) = (f̂ (k))−1(X (k)) − (X (−k))T β̂(k).

3. Test for independence between residuals and
remaining nodes X (−k) with consistent test,
e.g. HSIC (Gretton et al., Measuring statistical
dependence with hilbertschmidt norms, 2005).

4. Identify node which minimizes the test statis-
tic as sink node, remove sink node and repeat
from Step 1. to obtain causal ordering.

5. Prune redundant edges to obtain structure.

Consistently recovers causal ordering under sink
node identifiability and consistency of estimators.

Key Idea: Leverage rank invariances to es-
timate functional parameters and disentangle
learning of function from independence tests
used to find causal orientations.

Post-nonlinear rank regression methods for
Step 1. of structure learning procedure:

• Insight: strictly increasing f (k) preserves ranks

• Idea for β̂(k): maximize pairwise rank likeli-
hood function based on

P
(
X

(k)
j > X

(k)
i

∣∣X (−k))
= P

(
ε

(k)
j − ε

(k)
i > (X (−k)

i − X
(−k)
j )Tβ(k)∣∣X (−k))

• Idea for
(
f̂ (k))−1(x): maximize smoothed rank

correlation objective function

Q(z) = 1
n(n − 1)

∑
i ̸=j

(djx − diy)×

Φ
(√

n((X (−k)
j − X

(−k)
i )T β̂(k) − z

)
,

with djx := 1(X (k)
j ≥ x) and diy := 1(X (k)

i ≥ y).

• f (k) can be replaced by location-scale transfor-
mations. For unique identification, we assume(
f (k))−1(y) = 0 for some known y.

We provide two methods to recover the causal
ordering, a computationally efficient method
RankG under Gaussian noise, and a general
method for unknown noise distributions RankS.

4. Simulations
Experiments with synthetic PNL data:

• Randomly selected DAGs on 4 or 7 nodes.

• Different noise distributions.

• Weak and strong signal settings.

We report number of wrongly oriented edges
in estimated causal ordering, that is,

#{(i, j) : π̂(i) → π̂(j) ∈ G and j < i}.

• Rank-based methods outperform the com-
petition in all considered settings.

• Consistently recover valid causal ordering in
low sample sizes for weak signals.

• High noise compared to signal strength in-
duces more rank changes and thus, better per-
formance in weak signal settings.

•RankG is computationally efficient with compu-
tation times comparable with AbPNL method.

•RankG indicates some robustness under noise
misspecification.
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